

Polishing ABS Plastic Medical Devices Rapid Prototyping CNC Machining Improve Development

Basic Information

Place of Origin: China Shenzhen

Brand Name: ABS, PC, PMMA, POM, PA, PTFE, PEEK
 Certification: Polishing, Anodizing, Painting, Chrome Plating,

Silkscreen

Model Number: Medical Device Prototype

Minimum Order Quantity: 1 piece
Price: USD 30 piece
Packaging Details: Carton, Plywood box
Delivery Time: 3 - 5 work days

Payment Terms: T/T,Paypal
Supply Ability: 1 piece per day

Product Specification

Product Type: Medical Device Prototype
 Material: Plastic, Metal, Electronics

Compatibility: Can Be Used With Various Medical Devices

• File Format: 3D IGS, X-T, STEP, STP

Timeframe: Rapid Production For Quick Testing And

Feedback

Ease Of Use: Simple And Intuitive Design
 Prototype Type: Functional/Appearance
 Quality Control: 100% Inspention

Highlight: plastic medical devices rapid prototyping,

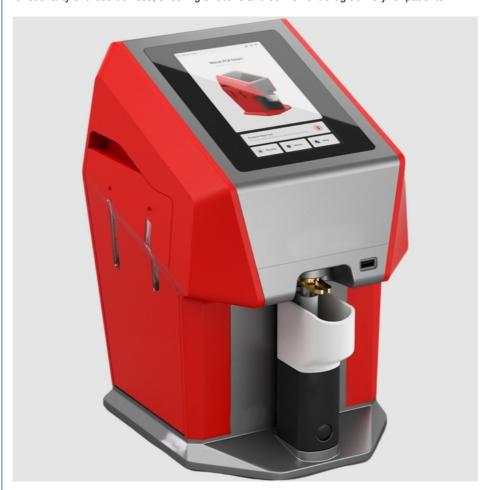
medical devices rapid prototyping cnc, polishing rapid prototyping medical

Product Description

examples of how plastic CNC machining prototypes have improved the development of specific medical devices

Surgical Instruments: Plastic CNC machining prototypes have been used to develop and refine surgical instruments, such as laparoscopic tools or orthopedic instruments. By creating prototypes that closely resemble the final product, designers and surgeons can assess the ergonomics, functionality, and ease of use of the instruments. This iterative process helps in optimizing the design, ensuring precise and efficient surgical procedures.

Prosthetic Limbs: Plastic CNC machining prototypes have played a significant role in the development of prosthetic limbs. By creating prototypes based on patient-specific measurements and designs, manufacturers can fabricate functional limb prototypes that closely mimic the final product. These prototypes allow for testing and fine-tuning the fit, alignment, and range of motion, resulting in prosthetic limbs that offer improved comfort, mobility, and functionality for the users.


Plastic CNC machining prototypes play a crucial role in the development of housings and enclosures for medical devices. These prototypes enable designers to evaluate the fit, finish, and aesthetic appeal of the device. Additionally, they offer the chance to test the positioning and ease of access to buttons, switches, and interfaces, which is essential for creating designs that are intuitive and user-friendly. Through continuous refinement of these prototypes, manufacturers can produce devices that are both functional and aesthetically pleasing, while also being simple to operate.

Components for Diagnostic Equipment: Prototypes created through plastic CNC machining have been instrumental in developing parts for diagnostic devices like MRI and ultrasound machines. These prototypes are crucial for assessing the functionality and precision of various components, including sensor housings, probe connectors, and patient interfaces. Through prototype validation, manufacturers are able to enhance the diagnostic equipment's accuracy, reliability, and overall quality.

Drug Delivery Devices: Plastic CNC machining prototypes have been used to refine drug delivery devices, such as inhalers or injection pens. Prototypes allow for the evaluation of factors like ergonomics, ease of use, and dose accuracy. By incorporating user feedback and conducting usability studies with prototypes, manufacturers can optimize the design and functionality of these devices, ensuring effective and convenient drug delivery for patients.

The examples illustrate the crucial role of plastic CNC machining prototypes in advancing the development of diverse medical devices. They facilitate iterative design enhancements, functional testing, the integration of user feedback, and the overall improvement of device functionality and user-friendliness.

Materials for Vacuum Casting	
You can choose a wide range of vacuum casting materials depending on the peculiarities of your project. Here are some choices for you:	
Process	Description
Step 1. Master Pattern Creation	The procedure starts with the development of a master pattern, which acts as the prototype for duplication. This master pattern can be crafted through several techniques, including 3D printing, CNC machining, or conventional manufacturing methods.
Step 2. Mold Preparation	A silicone mold is formed around the master pattern, usually in two halves, to facilitate the easy removal of the pattern and subsequent casting. Once created, the mold is secured inside a casting frame.
Step 3. Mold Release and Preparation	Prior to casting, a mold release agent is applied to ensure the easy removal of the final casted part from the mold. The mold is then preheated to a specific temperature to enhance material flow and reduce curing time.

Step 4. Material Mixing and Vacuum Degassing	The selected casting material, typically a two-part polyurethane (PU) resin, is mixed thoroughly to ensure uniform consistency. Once mixed, the material is placed in a vacuum chamber to eliminate any air bubbles or voids that might compromise the quality of the final product.
Step 5. Casting Process	Polycarbonate (PC) is a type of amorphous thermoplastic celebrated for its outstanding transparency and impact resistance. Additionally, it has robust electrical insulation properties and a moderate level of chemical resistance.
Step 6. Curing and Solidification	Once the mold is filled, the casting remains undisturbed to cure and harden. The duration of curing depends on the type of resin, the thickness of the part, and the surrounding conditions. If needed, heat or additional post-curing can be used to expedite the curing process.
Step 7. Mold Opening and Part Extraction	After the resin solidifies, the mold is opened, and the cast component is gently extracted. The mold can be repeatedly used to create more parts.
Step 8. Finishing and surface treatment	To attain the required aesthetics and functionality, the cast part may necessitate finishing and surface treatments, including trimming off excess material, sanding, painting, or applying other surface enhancements.

Our firm provides a wide array of professional finishing services that improve the look, functionality, and longevity of components. The key finishing services we offer include:

Anodizing: This electrochemical procedure, mainly applied to aluminum parts, forms a protective oxide coating that enhances corrosion resistance and offers a decorative appearance. Additionally, anodizing can be paired with dyeing to introduce various color choices.

Painting: Our painting services enable the application of diverse paint types to attain the preferred colors, textures, or protective coatings. Methods such as spray painting and powder coating are frequently utilized to improve the aesthetic and surface properties of components.

Pad and Silk Screen Printing: These techniques are utilized to apply bespoke designs, logos, or labels onto various parts. They serve to promote branding, product identification, and the inclusion of instructional information, thereby augmenting the aesthetic appeal.

Sanding and Polishing: Our services employ abrasive materials to smooth out roughness and imperfections on surfaces, achieving a finer and more polished finish. This method not only improves the parts' appearance but also their tactile quality.

Vapor Polishing: This process involves using solvents or chemicals to smooth the surface of plastic parts, removing imperfections and yielding a shiny, clear finish. Vapor polishing improves the aesthetic and functional quality of plastic components.

Powder Coating: This is a dry finishing technique in which a fine powder is electrostatically charged and applied to a part's surface. After application, the part is heated, causing the powder to melt and solidify into a tough, protective coating. Powder coating offers superior resistance to corrosion, chemicals, and ultraviolet radiation.

Blasting refers to the process of propelling high-velocity particles or beads at the surface of components. This method efficiently eliminates imperfections, burrs, and sharp edges, achieving a uniform and matte surface finish. Blasting enhances the overall surface condition and readies the components for further treatments or uses.

By taking advantage of our comprehensive finishing services, you can be confident that your parts will not only fulfill functional specifications but will also exhibit an improved appearance, enhanced performance, and greater longevity. Our experienced team will collaborate with you to identify the finishing techniques that best align with your unique needs.

Inspections and Review for Every Stage of Production

Barana Rapid ensures quality throughout the entire process by offering these inspection and review services:

Thorough verification of incoming materials

Design for manufacturing assessments for all provided quotes

Contract evaluations upon purchase order receipt

First article and ongoing process inspections

Comprehensive final inspections and tests, complete with necessary reports and certifications

Packing

Bubble bag

Bubble bags

Cartons

Customized packing as custom request

Carton

Pallet carton

Wooden case

Shipping

86 137 2889 6282

baranarm@baranarm.com

cncmachining-prototype.com

RM502 Block B Floor 5th LiTong Semiconductor industrial park ShaPuWei Community SongGang Street Baoan District Shenzhen, Guangdong, China, ZipCode 518105